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We present an algorithmic framework for a variant of the quantum Monte Carlo operator-loop algorithm,
where nonlocal cluster updates are constructed in a way that makes each individual loop smaller. The algorithm
is designed to increase simulation efficiency in cases where conventional loops become very large, do not close
altogether, or otherwise behave poorly. We demonstrate and characterize some aspects of the short loop on a
square lattice spin-1/2 XXZ model where, remarkably, a significant increase in simulation efficiency is ob-
served in some parameter regimes. The simplicity of the model provides a prototype for the use of short loops
on more complicated quantum systems.
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I. INTRODUCTION

Quantum Monte Carlo �QMC� simulations �1,2� comprise
arguably the most powerful set of methods for analyzing
strongly interacting models in quantum many-body physics.
Breakthroughs in QMC methodology over the last decade
have enabled the study of simulation cells of unsurpassed
finite size, many capable of simulating millions of quantum
species for simple models. Traditionally, large system sizes
were coveted to enable finite-size scaling to the thermody-
namic limit, something that remains important for the study
of quantum ground states and critical phenomena, where un-
conventional or nonmonotonic scaling is sometimes ob-
served �3�. However, recent interest in nanoscale quantum
systems, as well as ultracold atoms trapped in optical lattices,
has provided a situation where QMC methods are able to
approach realistic experimental system sizes �4�. The work
on algorithmic advances therefore continues at a rapid pace.

Besides the infamous sign problem �5,6�, which precludes
the simulation of many fermionic and frustrated magnetic
systems, the largest general obstacle for QMC methods are
algorithm freezing, critical slowing down, or other phenom-
ena perhaps best summarized as “loss of ergodicity.” These
can result in problems ranging from a slight loss of effi-
ciency �requiring longer Monte Carlo runs to reach a desired
level of statistical accuracy�, to serious issues such as com-
plete nonergodicity in some parameter regimes, leading to
the obscuration of all interesting physics in the model. For
example, an inability to accurately measure a subset of esti-
mators �in particular off-diagonal quantities� is a drawback
of some classes of simple “local” QMC updates �7�.

Perhaps the most important algorithmic breakthrough in
QMC technology was the introduction of the loop algorithm
by Evertz, Lana, and Marcu �8�. Until that time, the QMC
sampling procedure proceeded via local updates, roughly

analogous to single spin flips in a simple Monte Carlo simu-
lation of a classical Ising model �7�. The loop algorithm,
analogous to a Wolff or Swenson-Wang cluster �or global�
update, solved ergodicity problems related to sampling in a
grand-canonical framework, and also facilitated the measure-
ment of some off-diagonal quantities. Originally formulated
in a discrete world-line framework, the algorithm has been
continually refined and advanced, and is widely used in all
modern QMC frameworks, for example, in continuous
world-line methods �including worm algorithm variants
�9,10�� and the stochastic series expansion �SSE� framework,
which employs the “operator” �11� or “directed”-loop vari-
ants �12�.

The common feature of all QMC loop algorithms is the
creation of a defect or singular point �or in the case of the
worm algorithm, two points� which propagates through the
simulation cell updating the QMC representation of the
Hamiltonian or partition function �i.e., the world-line con-
figuration, or the basis state and operator list�. This defect is
typically resolved when it encounters its starting point �or
another propagating defect�, forming a single closed loop.
Loops formed in this way may then be used in a variety of
single-cluster or multicluster sampling schemes �7,13�. In the
following, we will call such an algorithm, where the closing
condition of the loop is that its “head” meets its “tail,” a
conventional or long loop.

In classical Monte Carlo methods, the prototypical anal-
ogy of the above algorithm was first introduced for the prob-
lem of proton distribution in ice water �14�, and later ex-
tended to Monte Carlo simulations of other vertex and ice
models �15�. This classical loop algorithm effectively allows
targeted updates in a reduced manifold of low-energy vertex
states. The original classical loop is the long loop, as de-
scribed above �see also Ref. �16��; however, a variation that
involves loops of shorter length has been shown to perform
more efficiently in a large number of cases, and has become
widely adopted �15,17�. This variation became known as the
short-loop algorithm, and as its name implies, involves cre-
ating loops of much smaller total length. A key reason for the
increase in efficiency observed with short loops appears to be

*yjkao@phys.ntu.edu.tw
†rgmelko@science.uwaterloo.ca

PHYSICAL REVIEW E 77, 036708 �2008�

1539-3755/2008/77�3�/036708�8� ©2008 The American Physical Society036708-1

http://dx.doi.org/10.1103/PhysRevE.77.036708


a respite from the tendency of long loops to grow in propor-
tion to the size of the simulation cell, which in some cases
can result in excessively long updates and a delay in defect
resolution �17�. Additionally, short loops do not have the
capacity to retrace multiple paths through the same region of
configuration space, avoiding the wasted computational
overhead that often can occur in long-loop algorithms.

Conceptually, such short loops are distinguished from the
long-loop construct based simply on the closing or resolution
condition of the loop’s head or defect. Namely, a short loop
closes not only if the defect encounters its own starting point
�i.e., the head meets the tail�, but also if it encounters any
other previous point of the loop body. Short loops are also
differentiated by the resulting dangling tail of propagated
defects, which must be removed from the loop structure be-
fore the Monte Carlo update can continue �see Fig. 1�.

From this description, the classical definition �15,17� of
the short-loop algorithm can be adapted to the case of an
operator-loop algorithm in a d+1 quantum simulation cell. In
this paper, we provide a detailed description of the short-loop
algorithm in a full QMC framework. We note that short loops
may be formulated in any of the aforementioned QMC algo-
rithmic flavors; in the next section we choose to introduce
them in the popular and simple SSE QMC paradigm
�11,12,18,19�. We are particularly motivated by the question
of whether the large efficiency gains enjoyed by short loops
in classical Monte Carlo simulations of vertex models will
translate over to the QMC arena. In Sec. IV, we attempt to
answer this question with concrete autocorrelation measure-
ments on the simple demonstrative case of the two-
dimensional �2D� S=1 /2 XXZ model. We conclude the paper
with a short discussion of several advantages and disadvan-
tages of the short-loop algorithm, and possible adaptations of
it to more complicated quantum models in the future.

II. LOOP ALGORITHMS IN THE STOCHASTIC SERIES
EXPANSION FRAMEWORK

The SSE decomposition of a quantum Hamiltonian on a
d-dimensional lattice proceeds via the expansion of the
finite-temperature partition function �12,18�,

Z = �
�

�
n=0

�

�
Sn

�− ��n

n!
����

i=1

n

Hti,bi
��	 . �1�

Here, the sum over Sn represents a sampling of an operator-
index sequence �defined below�, performed via a Metropolis
Monte Carlo procedure. In Z, a quantum Hamiltonian is typi-
cally written as a sum of elementary interactions,

H = − �
t

�
b

Ht,b, �2�

where in a chosen basis 
��	� �e.g., the standard Sz basis� the
operators satisfy Ht,b��	����	, and ��	 and ���	 are both
basis states. The index t refers to the operator types �various
kinetic and potential terms�, while b is the lattice unit over
which the interactions are summed �e.g., a nearest-neighbor
bond�. The operator-index sequence is hence represented as
Sn= �t1 ,b1�¯ �tn ,bn�, where n is the expansion order. Typi-
cally, the size of the operator-index sequence is set to some
constant M �n �since n fluctuates�, and the operator-index
list is filled in with unit or identity operators, represented in
SM as �0,0�.

For concreteness, we will consider the paradigmatic spin-
1/2 XXZ model,

H = J�
�i,j	

�Si
xSj

x + Si
ySj

y + �Si
zSj

z� − h�
i

Si
z. �3�

A standard SSE algorithm for this Hamiltonian is laid out in
detail in Ref. �12�, and we refer the reader to that work as we
make frequent reference to it in the upcoming discussion. In
particular, the square lattice decomposition �Eq. �2�� for this
Hamiltonian results in two bond terms,

H1,b/J = C − �Si
zSj

z +
h

4J
�Si

z + Sj
z� , �4�

H2,b/J =
1

2
�Si

+Sj
− + Si

−Sj
+� , �5�

where the constant C is defined as necessary to make H1,b
�0, hence avoiding the sign problem.

There are two standard �nontrivial� updates for SSE simu-
lations of typical Hamiltonians. The first is the diagonal up-
date, designed to perform substitutions �0,0�↔ �1,b�, chang-
ing the expansion order n. The second update, of interest to
us, is the operator loop update, which accomplishes substi-
tutions within and between operator-list elements �1,b� and
�2,b�, keeping n fixed but effectively sampling off-diagonal
operators. The operator loop is performed in a linked list of
vertices, an abstraction of the propagation of the basis state
��	 by SM in the d+1-dimensional simulation cell �12�. The
linked list is defined graphically by single operators propa-
gating a unit’s �bond’s� basis state at some given expansion
step �see Fig. 2�. In the S=1 /2 XXZ model, there are six
allowed vertices resulting from six nonzero matrix elements
�see Eq. �18� of Ref. �12��.

In the conventional long-loop SSE algorithm, a vertex is
updated by a propagating defect. The defect propagates
along the linked list and, upon meeting its own starting point
�i.e., when the head meets the tail�, forms a closed loop.

dangling
tail

a) b)

starting
point

FIG. 1. �Color online� Schematic comparison of a long loop �a�
versus a short loop �b�. In �a�, the loop defect propagates until it
encounters its own starting point. In �b�, the loop defect propagates
only until it encounters its own path. The dangling tail �dashed
green line� must be removed.
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Typically, the starting point of the loop is chosen randomly
from the linked vertex list. During the propagation, the de-
fect enters a vertex simply by following a link from the “exit
leg” of the previously visited vertex. An exit leg is typically
chosen by a Metropolis Monte Carlo procedure: For ex-
ample, a simple heat-bath scheme where the probability of
exiting along any given vertex leg is proportional to the
weight of the resulting matrix element. A particularly effi-
cient way to choose these exit probabilities in the SSE is to
use the directed-loop equations, detailed in Ref. �12�—
however, the form of the loop algorithm �long or short� is
independent of the choice of exit probabilities.

Once closed, a long loop satisfies detailed balance and, in
effect, the visited vertex legs may be flipped with probability
1—hence its relationship to the classical Wolff cluster algo-
rithm �13�. In practice, one need not store the loop path at all,
as updating of the vertex legs occurs in real time as the
defect propagates. Once closed, the vertices visited by the
loop are already affected �i.e., flipped� and one must simply
update the stored global basis state ��	 and operator-index
sequence SM. Note that this update typically occurs after a
significant number of loops have been preformed—this num-
ber is discussed much more below.

As alluded to above, one difficulty encountered in this
loop algorithm for some parameter regimes of certain Hamil-
tonians �not necessarily Eq. �3�� is that loops can become
very long before they close, or sometimes in extreme cases
do not close at all �20,21�. The standard practice to combat
this is to impose some maximum loop length

�loop
max = con �6�

�co is some constant�, upon reaching which loop construction
is terminated. Here, loop length may be measured, for ex-
ample, in the number of vertex legs traversed per algorithm
iteration �typically two�. In the case of termination, detailed
balance is preserved by disregarding updates attained by the
loop, and keeping the previous Monte Carlo steps ��	 and SM
�12�. Unfortunately, the algorithm overhead �i.e., CPU time�
used in constructing the aborted loop or set of loops is lost in
this case.

These examples serve to further motivate the develop-
ment of a loop algorithm that does not suffer from such
drawbacks. One solution, in analogy to the classical short-
loop algorithms discussed in the preceding section, is a quan-
tum short-loop variant of the conventional SSE operator
loop. In the next section, we discuss details of the quantum
short-loop algorithm, including the closing condition, han-
dling of bounce processes, and tail removal.

III. SHORT-LOOP ALGORITHM

A. Overview

At first glance, the definition of the short-loop algorithm
in the SSE is quite simple. Begin by propagating a loop

defect as one would normally do for the long operator loop,
starting from a random vertex leg. In the event where the
propagating defect encounters a vertex leg where it has pre-
viously been, terminate the loop algorithm. The segment of
the path created by the defect that does not form the loop is
the dangling tail �see Fig. 1�, and must be removed or re-
verted back to its original state. Also, a consequence of the
need to remove this tail is the requirement to store the loop
path created by the propagating defect—something that is
not needed in the conventional long-loop algorithm.

Consider the important closing condition of the short-loop
algorithm in more detail. It turns out that, unlike the classical
case, the simplified criterion mentioned above �the loop
closes upon encountering any previously visited vertex leg�
is insufficient for the QMC case, since a quantum operator
vertex is involved. To facilitate closing of the quantum short
loop, the terminating leg should have been, upon its original
visit, an in leg �see Fig. 3�; if the propagating defect encoun-
ters a previously visited out leg, the loop creation algorithm
should continue unabated. An attempt to close the short loop
at an out leg would result in an unresolvable defect, where
removing the dangling tail becomes impossible without de-
stroying the loop itself. Once the terminating leg is chosen,
its spin is not flipped, and the loop is closed at that vertex
using the remaining two visited legs, finally resolving the
propagating defect. Assuming that one has flipped spins as-
sociated with vertex legs during the propagation of the de-
fect, starting from the terminating vertex leg, flip back all
spins and update the associated vertices on the dangling tail,
until the initial starting point is reached. Since this tail re-

�↑↓ |H2,b| ↓↑�=

FIG. 2. A vertex as a graphical representation of a bond matrix
element. Filled circles represent spin +1 /2, open represent spin
−1 /2. For the XXZ model �Eq. �3�� this vertex has weight J /2 �12�.

B

b)a)

A

FIG. 3. �Color online� A linked list of six vertices, with operator
loops and final �i.e., flipped� basis state spins. For clarity, links are
not illustrated, but occur as vertical lines connecting vertex legs
�12�. �a� A long loop, which propagates around the linked list until
it encounters its own original starting vertex leg �filled red with a
cross�. �b� The same loop construction, if governed by short-loop
rules, would propagate around the linked list until it encounters a
previously visited vertex leg which was also an in leg �open red
with a cross�. The loop closes in the vertex containing this leg, by
connecting the remaining visited sites �A and B�. The beginning
portion of the loop propagation, the dangling tail �dotted green
line�, is removed and the associated vertex legs are not flipped.
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moval occurs deterministically, detailed balance remains sat-
isfied for the short-loop algorithm. The short loop is now
complete, and the usual progression of the SSE Monte Carlo
algorithm �i.e., more loop updates, diagonal updates, or mea-
surements� may proceed.

A comparison between two long and short loops is illus-
trated in Fig. 3. Even in this simple case, several key factors
that determine loop efficiency are apparent. First, the short
loop is obviously much smaller �in the total number of ver-
tices visited� than the long loop, which served as the original
motivation for designing this algorithm. Further, by inspect-
ing the center of Fig. 3�a�, it is apparent that two vertex legs
have been visited two times in this illustration. Processes
such as this �“retracing”� may have a negative impact on
long-loop performance, since the computational effort asso-
ciated with propagating the defect through these vertex legs
may ultimately result in no flipped basis spins. In this way, it
is apparent that a long loop could correspond to constructing
separate smaller loops and flipping them all together. In con-
trast, the same smaller loops, if constructed with several
short-loop updates, would flip the loops independently. Is-
sues such as these may also result in slight improvements in
efficiency when using the short-loop algorithm.

Any gains of this sort must, however, be weighed against
the computational overhead associated with storing the short
loop, resolving the propagating defect in the terminating ver-
tex, and removing the dangling tail. The process is illustrated
in Fig. 3�b�, where the dangling tail involves three vertex
legs �two of which must be reflipped�. In addition to this
computational overhead, additional data structures are re-
quired in the formation of the short-loop algorithm to store
the loop path in memory to allow for the removal of the tail.
Since the additional CPU time and memory burdens may
conceivably negate any efficiency improvements gained on
the long loop, the simple arguments associated with Fig. 3
are likely not sufficient to draw quantitative conclusions of
short-loop performance—this is left to Sec. IV where we
discuss autocorrelation results. Before addressing this, we
proceed with several more key details to note when imple-
menting the short-loop algorithm in a practical QMC code.

B. Short loops in the presence of bounce processes

In the preceding discussion, one important complicating
factor was purposely neglected: The handling of so-called
bounce processes in the formation of the operator loops.
Bounce processes �see also Ref. �12�� are defined as the case
where a propagating loop defect, upon encountering any
given vertex, chooses �by way of the specific Hamiltonian
and algorithmic probability tables� its out leg to be the same
as its in leg, thereby starting on a path which retraces, for
some distance at least, the loop back along its path of previ-
ously visited vertex legs.

Bounce processes are known to be the most serious det-
riment to the efficiency of the loop update in the SSE �12�
�although they are perhaps not the only detrimental process
�22��. Advanced methods to construct the QMC probability
tables governing loop propagation, such as the directed-loop
weights �12,22,23�, combat this problem by minimizing the

weight of bounce processes when possible. However, it is
common to find many physically interesting models where
bounce processes cannot be avoided. As such, any practical
implementation of a short-loop algorithm must be able to
take bounces into account.

The simple short-loop algorithm described in Sec. III A
requires several modifications, which are essentially condi-
tions to ensure that the loop does not terminate prematurely
if it encounters its own path due to a bounce process. Recall
that, in order to remove the dangling tail upon termination,
the short loop requires storage of the loop propagation path.
Considering the possibility of bounce processes, it becomes
obvious that a modified stack �last in, first out� is the appro-
priate data structure with which to store the loop propaga-
tion. Vertex legs which are part of a new path should be
pushed onto the top of the stack, while bounces or retraced
vertex legs should be popped off the top. More specifically,
several cases should be considered �see Fig. 4�. First, in the
simple case of a first bounce, easily identifiable since the in
leg is identical to the out leg, the first bounce vertex leg is
not added to the stack �Fig. 4�a��. If the bounce continues
along the previously visited path �Fig. 4�b��, previously vis-
ited vertex legs are popped off the top of the stack. New legs
are added to the stack when the path deviates from the pre-
viously visited path, as in the cases shown in Figs. 4�c� and
4�d�. Note that only these last two cases, where the propa-
gating defect begins tracing a new path, should have the
option of closing the short loop.

After the short loop eventually closes, this stack data
structure is accessed from the terminating vertex leg and re-
traced to the bottom of the stack to remove the dangling tail
�see Fig. 3�. With bounce processes pushed and popped cor-
rectly during defect propagation, the algorithmic overhead
involved with removing the tail can be reduced considerably.

With these considerations, the problem of implementing
the short-loop algorithm is essentially a coding procedure—

a) b)

c) d)

FIG. 4. �Color online� �a� A bounce process which �b� continues
to retrace the loop path, �c� rebounces to continue a new path, �d�
branches to continue a new path.
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efficient execution of storage and propagation processes.
CPU and memory requirements can vary considerably de-
pending on this implementation. In the section below, we
provide some quantification of the short-loop efficiency with
one particular C++ implementation, using standard STL data
structures.

IV. SIMULATION RESULTS FOR THE XXZ MODEL

For concreteness, we present a comparison of the effi-
ciency of the long- and short-loop algorithms in the simple
XXZ model, Eq. �3�, where in the below data we have set
J=1. One of the first important indicators of short-loop effi-
ciency is the length of the dangling tail, i.e., the discarded list
of vertices that are not included in the definition of the closed
loop for the purposes of updating the simulation. Long tails
are generally detrimental to loop efficiency, due to the
wasted CPU effort in both constructing and erasing them. In
Fig. 5, this ratio is illustrated for several simulation sizes and
parameter values, where the ratio of the tail length ��st� ver-
sus the total cluster size �tail plus loop, �st+�sl� is plotted.
Here, the short-loop length ��sl� is defined without bounce or
back-tracking processes �see Fig. 4�. From this figure, it is
clear that the ratio �st /�sl depends highly on simulation pa-
rameters; however, one tends to see convergence in param-
eter regions of large � or h, particularly with system size.
This demonstration shows that the tail in the short-loop al-
gorithm is, for these parameters, on the order of the length of

the loop itself. One would prefer perhaps the existence of
shorter tails on average; however, we are careful to note here
that, in many cases for the XXZ model, the average retained
loop length can be quite small �only several vertices�. It
would clearly be interesting to address this ratio in other,
more complicated Hamiltonians, which tend to produce
larger loops.

Other characterizations of the short loop are possible, in
particular a comparison of the �retained� loop length to the
long-loop length. In this case, several definitions of loop
“length” are possible. For example, we might be interested in
the short-loop �sl mentioned above, compared to a “conven-
tional” definition of the long-loop length �ll �which does not
account for bounces or backtracking such as in Fig. 4�.
Again, this comparison is expected to depend highly on the
model, lattice size and dimension, and parameter region one
is simulating. We find in this simple XXZ model, for ex-
ample, that the ratio �ll /�sl
5 to 10, for simulations with
h=0 and ��1 �depending on L and other factors�. For simu-
lations with �=0 and finite h�0, �ll /�sl begins at approxi-
mately 20 and falls off as h increases. Because we choose an
equilibration condition that the number of vertices traversed
be constant and equal �discussed more below�, the ratio of
the number of loops performed by the long loop to the small
loop reflects very closely the inverse of the ratio �ll /�sl. De-
pending on implementation, the proportional amount of CPU
time spent on the short-loop algorithm can also be a signifi-
cant constant multiple of this ratio.

We turn to what is perhaps the most quantitative indicator
of simulation performance—measurements of autocorrela-
tion functions for observable parameters �13�. The autocor-
relation for a Monte Carlo time series of observables O�1�,
O�2� , . . ., is defined with the normalized correlation function,

A�O��t� =
�O�i + t�O�t�	 − �O�i�	2

�O�i�2	
, �7�

where the averages are over the Monte Carlo “time” steps i
�elements of the Markov chain�. Higher autocorrelations im-
ply that series elements are less independent, while small
autocorrelation times are a necessary condition for a simula-
tion to be ergodic in a specific region of configuration space.

Before we proceed, we caution that one must be careful to
note that quantitative values of autocorrelation functions are
highly dependent on several simulation variables, which
might be most concisely summed up as the definition of a
Monte Carlo step �MCS�. The MCS defines the increment i
in the definition �7�, and hence critically affects the measure-
ment of this quantity. In the SSE QMC, a MCS is typically
defined as a diagonal update �mentioned above�, followed by
a number of operator loops. Changes incurred within these
updates are mapped onto the stored basis state ��	 and op-
erator string SM, at which point the MCS is completed �and
subsequently repeated�. The number of operator loops is per-
haps the most important variable in the definition of a MCS,
and upon consideration it immediately becomes clear that
this number is potentially defined much differently in a long
versus a short loop, since the loop length discussed above
varies considerably between the two. For example, a typical
�12� way to define a MCS is that it contains a number of

1 1.1 1.2 1.3 1.4 1.5
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 L=4

L=8
L=16

0 0.1 0.2 0.3 0.4 0.5
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

∆

h = 0

� s
t/

(�
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+

� s
l)

� s
t/

(�
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+

� s
l)

h

∆ = 1.2

FIG. 5. �Color online� Tail length as a fraction of the total clus-
ter size, measured in a number of vertices visited, for simulations of
the 2D XXZ model employing the short-loop algorithm and one
particular solution of the directed-loop equations �12�. Here, �
=2L.
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loops �Nloop� that on average will traverse each vertex leg in
the linked list one time,

N̄leg = cl Nloop �loop, �8�

i.e., the constant cl is set to 1. Here, N̄leg is the number of
vertices �n� in the expansion multiplied by the number of
legs per vertex �four for the simple XXZ model�, and the
average loop length �the number of legs visited by each loop,
�loop� may be approximated during equilibration time. A
smaller cl will in general result in larger autocorrelations,
since by definition each MCS traverses less vertex legs, re-
sulting in more dependence between configurations in adja-
cent QMC steps. In the following results we set cl=0.25, and
adjust Nloop during equilibration to satisfy Eq. �8�. This value
of cl is smaller than convention; however, it increases our
autocorrelations to a manageable value in this simple model.

Another consideration not taken into account by simple
autocorrelation function comparisons is the CPU effort in-
volved when the definition of a MCS varies significantly, as
in our case. Clearly, the short-loop algorithm involves both
the overhead of storage of the stack data structure �contain-
ing both the loop and the tail�, as well as the additional
computational effort of erasing the tail at the end of loop
construction. Indeed we observe that a short-loop MCS takes
more CPU time than an analogously defined long-loop MCS,
although the extent to which depends highly on algorithmic
implementation and compiler optimization. Nonetheless, we
keep this in mind in the following discussion.

Figure 6 illustrates autocorrelations versus Monte Carlo
time step for two common observables, the spin stiffness �s
�24� and the staggered susceptibility �s �18�, for the XXZ
model with parameters L=16, h=0, and �=1.1. It is already
apparent that the short loop considerably improves autocor-
relations for both observables in this simple demonstration.
The CPU time involved in the short-loop run was larger than
the long-loop run by a factor of 4 in this case. Upon reflec-

tion however, it is perhaps remarkable that the short loop
gives any improvements to autocorrelations whatsoever,
since presumably �as chosen by the equilibrium condition
�8�� the same average number of vertex legs have been tra-
versed by both algorithms. This is possibly a measure of the
degree to which the elimination of retracing �Fig. 3�, or the
flipping of many independent short loops �discussed previ-
ously�, gives efficiency improvements over the long-loop al-
gorithm. It would clearly be interesting to study this issue in
more detail in the future.

We concentrate now on autocorrelation measurements of
the slowest decay in Fig. 6, the staggered spin susceptibility.
To further characterize algorithmic efficiency, we look at in-
tegrated autocorrelation times, defined as

�int�O� =
1

2
+ �

t=1

�

A�O��t� , �9�

using O=�s. Figure 7 illustrates this calculation for short
versus long loops as one sweeps in parameters � and h, for
L=16, using one particular solution to the directed-loop
equations which minimize bounces �12�. As evident from
Fig. 8, this system size is large enough that any remaining
finite-size effects are obscured by statistical errors �note also
that the computational effort of the SSE QMC scales linearly
in both � and L�. The quantitative value of �int��s� depends
highly on the definition of the MCS �cl�, as well as the
directed-loop equations �using a heat-bath solution �12� in-
creases �int��s� considerably�. In some cases, for example, in
certain bounce-free regions of parameter space, integrated
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FIG. 6. �Color online� Autocorrelations of �s and �s, plotted as a
function of time in Monte Carlo steps, for the XXZ model with L
=16, �=32, h=0, and �=1.1 for both the long-loop �colored sym-
bols� and short-loop �solid symbols� algorithms. Significant im-
provement of the autocorrelations for the short-loop over that for
the long-loop algorithm is observed.
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FIG. 7. �Color online� Integrated autocorrelation time for a L
=16 system at �=32. Error bars, although not plotted explicitly, are
evident in the magnitude of fluctuations of the data points.
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autocorrelations are very small and the difference between
short- and long-loop performance is lost in the statistical
errors. However, for another large region of phase space
�such as that illustrated in Fig. 7�, the general trend is that the
short-loop algorithm outperforms the long loops in terms of
�int��s�. Surprisingly, even in the simple XXZ model, we
were unable to find regions of parameter space where �int��s�
is significantly larger for the short-loop algorithm than for
the long-loop algorithm. That being said, we observe that in
our implementations of the short-loop algorithm, the amount
of CPU time required to produce results such as in Fig. 7 are
significantly larger for the short-loop code, typically by a
factor of 4 or more. Memory allocation is also larger for the
short loops, although as with most QMC simulations still
relatively small compared to hardware constraints, offering
no real disadvantage over the conventional long-loop algo-
rithm.

Recall, the purpose of the short loop is perhaps not to
bring significant efficiency gains to all models, rather to
those models where long-loop length tends to get excessive,
causing in some cases the loop to be truncated. Figure 9
demonstrates the fact that this practice of truncating long
loops in the SSE QMC results in a systematic increase in the
integrated autocorrelation time. By comparison, the same set
of parameters using the short-loop algorithm results in a
�int��s�
1, when run using the same condition �cl=0.25 in
Eq. �8�� to define the QMC �with a smaller number of short
loops, this value will increase�. Thus, it is clear that the ad-
vantage in using the short-loop algorithm will only increase
in events where long loops are observed to become aborted
�or excessively long�, such as those expected to occur on
more complicated quantum models.

V. DISCUSSION

Motivated by the success of short-loop algorithms in
Monte Carlo simulations of classical vertex and ice models,
we have presented an adaptation of the short-loop algorithm
for use in QMC simulations of quantum lattice Hamiltonians.
This quantum short-loop algorithm is a modification of the

conventional �“long”� quantum loop or worm algorithm,
whereby smaller clusters in the d+1-dimensional simulation
cell may be constructed and updated. Short loops are defined
by a modified construction algorithm, where a propagating
defect closes a loop upon crossing a part of its previously
visited path. Unlike the conventional long loop, this results
in a dangling tail that must be removed before the QMC
algorithm can continue. Within the SSE QMC framework,
we introduced the general algorithmic rules and data struc-
tures required for constructing and updating short loops �in-
cluding an additional stack to store the loop under construc-
tion�, and outlined some expected advantages and
disadvantages of the new algorithm as compared to the con-
ventional long-loop algorithm.

Using a C++ implementation of the short-loop algorithm
in the simple square lattice S=1 /2 XXZ model, we charac-
terized key aspects of simulation performance, and compared
to the conventional long-loop algorithm using identical pa-
rameters. Remarkably, the short-loop algorithm is observed
to give much smaller autocorrelation times—a key indicator
that this modification results in an increase in simulation
efficiency. However, with this improvement in autocorrela-
tion time comes a significant increase in CPU effort �and to a
lesser extent memory usage�. Hence, before using the short-
loop algorithm in large-scale QMC simulations, one must be
careful in identifying models and parameter regions where
this compromise becomes favorable.

Significant work still remains to be done in optimizing
and characterizing the short-loop algorithm, particularly in
different QMC flavors and on more complicated quantum
models. Although conventional estimators such as those dis-
cussed here will remain unbiased by the short-loop algo-
rithm, it remains to be determined whether certain schemes
to measure Green’s functions and dynamical properties are
affected by the smaller loops that are generated �25�. In the
immediate future, the quantum short-loop algorithm will
likely be most useful in specific complicated models �e.g.,
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FIG. 8. �Color online� Integrated autocorrelation time for simu-
lations with �=1.2 and h=0.2, versus the inverse linear system
size. The inverse temperature of each run is set at �=2L. Error bars
are roughly equivalent to the symbol size.
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FIG. 9. �Color online� The integrated autocorrelation time for a
L=8, �=16 system with h=0 and �=1.4. The x axis is the percent-
age of Monte Carlo steps that are aborted due to the termination of
a long loop. This truncation percentage is controlled by restricting
the maximum loop length with Eq. �6�.
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those with long-range interactions in the Hamiltonian� where
conventional long loops are observed to behave poorly,
rather than as a means of improving efficiency in the general
case. Eventually, a more wide-spread adoption of the short
loop may be warranted, although further implementation and
characterization on additional models will be required to
more clearly identify its strengths and weaknesses.
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